HomeIf sinθθ = K find tanθθ, 0° ≤≤ θθ ≤≤ 90°. If sinθθ = K find tanθθ, 0° ≤≤ θθ ≤≤ 90°. By Classgist June 29, 2025 1 Comment About Author Classgist One Comment Dr Ben June 30, 2025 You’re given: sin(θθ)=K\sin(θθ) = Ksin(θθ)=K and asked to find: tan(θθ)\tan(θθ)tan(θθ) for 0∘≤θθ≤90∘0^\circ \leq θθ \leq 90^\circ0∘≤θθ≤90∘. Assuming the equation means: sin(θθ)=K\sin(θθ) = Ksin(θθ)=K (i.e., “θθ” is treated as a single angle, so it’s not a typo of sinθ⋅θ\sinθ \cdot θsinθ⋅θ) Then we want tan(θθ)\tan(θθ)tan(θθ) Step-by-step: From: sin(θθ)=K\sin(θθ) = Ksin(θθ)=K Then: θθ=sin−1(K)θθ = \sin^{-1}(K)θθ=sin−1(K) Then: tan(θθ)=tan(sin−1(K))\tan(θθ) = \tan(\sin^{-1}(K))tan(θθ)=tan(sin−1(K)) Identity: Let x=sin−1(K)x = \sin^{-1}(K)x=sin−1(K). Then: tan(x)=sin(x)cos(x)=K1−K2\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{K}{\sqrt{1 – K^2}}tan(x)=cos(x)sin(x)=1−K2K (From the Pythagorean identity cos(x)=1−sin2(x)\cos(x) = \sqrt{1 – \sin^2(x)}cos(x)=1−sin2(x), valid in the range 0∘≤x≤90∘0^\circ \le x \le 90^\circ0∘≤x≤90∘). Final Answer: tan(θθ)=K1−K2,for 0≤K≤1\tan(θθ) = \frac{K}{\sqrt{1 – K^2}}, \quad \text{for } 0 \le K \le 1tan(θθ)=1−K2K,for 0≤K≤1 Reply Add a Comment Cancel replyYour email address will not be published. Required fields are marked *Comment:*Name:* Email Address:* Website: Save my name, email, and website in this browser for the next time I comment.
You’re given:
sin(θθ)=K
and asked to find:
tan(θθ)
for 0∘≤θθ≤90∘.
Assuming the equation means:
Step-by-step:
From:
sin(θθ)=K
Then:
θθ=sin−1(K)
Then:
tan(θθ)=tan(sin−1(K))
Identity:
Let x=sin−1(K). Then:
tan(x)=cos(x)sin(x)=1−K2K
(From the Pythagorean identity cos(x)=1−sin2(x), valid in the range 0∘≤x≤90∘).
Final Answer:
tan(θθ)=1−K2K,for 0≤K≤1